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Abstract—As more and more applications are deployed in
the cloud, it is important for both the user and the operator
of the cloud that the resources of the cloud are utilized effi-
ciently. Virtualization and workload consolidation techniques are
pervasively applied in the cloud to increase resource utilization
while providing isolated execution environments for different
users. While virtualization hides the architectural details of
the underlying hardware, it can also increase the variability
in application execution times due to heterogeneity in available
hardware, and interference from other applications sharing the
same hardware resources. This reduces both the productivity
of cloud platforms and limits the degree to which software co-
location can be used to increase its efficiency.

This paper describes KONGMING, a statistical approach to
model the relationship between the resource availability on a
given machine (a function of its design and any applications
currently running on it) and the performance of applications that
run on it. Based on a fixed number of training runs of a given
application KONGMING can predict how long the application will
run on a new machine on which an unknown set of applications
are currently executing. Further, given models of two applications
KONGMING can predict how long both will run when they are co-
scheduled on the same machine. We demonstrate KONGMING’s
effectiveness and accuracy by applying it to executions of the
SPEC2006 and YCSB benchmarks on both a dedicated cluster
and EC2 virtual machine instances.

I. INTRODUCTION

Accurate prediction of application behavior is a critical
challenge in the design of efficient computing systems. Given
finite computing resources it is important to map computational
work to these resources in a way that maximizes overall system
efficiency and/or guarantees some level of performance of
each individual task. This is relevant in fields such as cloud
computing where large numbers of users submit tasks to a pool
of computing resources. The resource provider must assign
these tasks to cores, caches, memories and networks in a way
that uses the least resources to execute the given tasks while
bounding the performance degradation caused by contention
for shared resources by concurrently executing tasks. While
providers such as Amazon have successfully shown the ability
to protect some resources from contention (e.g. the computing
ability of individual cores, the storage capacity of main mem-
ory), contention for other resources such as disks and memory
hierarchies can be significant. The same problem appears in
domains such as High-Performance Computing, where a single
application is granted exclusive access to many nodes and their
network. The individual tasks within a single application must
share resources much like tasks from different applications,
requiring either the application or an external task scheduler

(e.g. Charm++ [13]) to assign tasks to resources in a way that
maximizes overall performance.

Effective resource scheduling in these and other compu-
tational domains require accurate prediction of application
behavior that accounts for the effects of resource contention.
Specifically, this paper focuses on the following prediction
questions:

• Given application A and a system that is currently ex-
ecuting some set of applications, predict A’s execution
time on this system, and

• Given two applications A and B and a given unloaded
system, predict how long A and B will execute if co-
scheduled on the same system.

This task is very difficult both due to the general complexity
of hardware and software and the lack of information available
about their internal structure. To predict how long an applica-
tion will run on a given system it is necessary to account for
the way it uses the system’s resources, how other co-running
applications use the same resources and how the system’s
hardware and software arbitrates the use of these resources.
For example, consider multiple processes accessing the same
disk. The execution times of these I/O accesses depends on
how they’re distributed in time (e.g. bursts of traffic or periodic
access) and space (e.g. whether the disk head moves across
cylinders). Concurrent accesses by multiple processes induces
more complex temporal and spatial distribution of accesses
that depends on the exact set of executing processes. Given
perfect information about each process’s I/O accesses and
the structure of the system’s I/O hardware and software it is
possible to predict the performance of each disk access with a
sufficiently detailed simulation. Unfortunately, because such
information is rarely available in practice simulation-based
predictions are difficult to carry out for realistic use-cases. In
the particular case of cloud computing users have information
about their applications but no knowledge of the hardware
or co-running applications, while cloud providers have some
understanding of the hardware and system software but no
knowledge of the internals of the applications that execute on
each node. The other issue with simulation is its high cost,
which needs to be paid on every change in the properties of
the hardware (e.g. CPU frequency) or software (e.g. set of
executing applications).

The inherent limitations on the information available about
the properties of hardware and software on a given machine
at a given point in time motivate the need for techniques
that learn as much of this information as possible based on



empirical observations and statistical modeling. This paper
presents KONGMING, a statistical approach to predicting ap-
plication behavior in a wide range of dynamic scenarios that
accounts for variability in hardware properties and the impact
of resource contention. KONGMING quantifies the effective
performance of a given system at a given point in time by
executing a suite of micro-benchmarks on it. The execution
times of these micro-benchmarks quantify for the effective
performance of a wide rage of node resources, including CPU,
memory hierarchy and disk for several representative ways
of using these resources. To make predictions for a given
application A KONGMING runs A a bounded number of times
on differently-loaded systems , quantifying the type of load in
each run using our micro-benchmarks. This data is used to train
a statistical model that maps effective system performance to
A’s execution time. KONGMING predicts how long A will
run on a given system by running the micro-benchmarks on
the system and applying A’s model to their execution times.
To predict how long A will run when executing concurrently
with application B on an otherwise unloaded system we
use our micro-benchmarks to quantify B’s impact on the
system’s effective performance and then apply A’s model on
this information.

To predict the behavior of arbitrary combinations of ap-
plications on different systems KONGMING must execute
each application a bounded number of times, with the total
training work scaling linearly in the number of applications.
This is in contrast to much larger space of possible system
configurations: polynomial number of possible configurations
of node hardware (memory, CPU, frequency, etc.) multiplied
by an exponential number of sets of applications that may be
concurrently executing on a given system. KONGMING does
not address the problem of predicting an application’s behavior
based on its inputs. Since this problem is orthogonal to man-
aging the complexity of hardware and software interactions,
solutions to this problem are complementary to our work on
KONGMING. Finally, although the focus of this paper is on
prediction of execution time, the KONGMING approach can be
used to predict of other behaviors such as energy use, which
is part of our future work.

Prior work, which is detail in Section V, has consid-
ered the problem of predicting application performance while
accounting for resource contention. Cuanta [11] employs a
canonical set of benchmarks to simulate cache load patterns
and attempts to match applications to the benchmarks that
represent them, while Bubble-Up [14] uses a memory intensive
“bubble” to simulate memory interference. Both focus on
resource contention for a single type of memory resource and
do not address the problem of interacting effects of contention
for multiple resources. Further, since Cuanta is tied to hardware
parameters, it is not portable across platforms. Paragon [8]
identifies a representative set of applications and predicts the
behavior of new applications across platforms by relating
them to the established set. However, it needs to run all the
reference applications on all the platforms of interest to make a
prediction. Finally, Zhao et al [18] predict interference-induced
performance degradation using a piecewise regression model
but require users to manually partition the space of interference
effects.

KONGMING advances the state of the art by presenting

an automated approach to predicting application execution
time based on empirical measurement of a system’s effective
performance. It transparently accounts for effects of hardware,
system software and resource interference by executing appli-
cations. Its ability to predict how long an application will run
on a given system and how long pairs of applications will
run when scheduled together provide a valuable capability
for proactive and efficient workload scheduling. Section II
presents a basic theoretical model of how applications behave
on systems. In Section III this model is instantiated with a
specific abstraction based on the insight that effective system
performance should be quantified based on empirical measure-
ments rather than detailed but impractically slow simulation
models. Section IV presents the experimental evaluation of
the KONGMING approach, showing that it accurately predicts
application behavior for our two target use-cases on both
Amazon EC2 systems as well as on systems within a dedicated
cluster. Finally, related work is discussed in Section V.

II. MODEL OF APPLICATION PERFORMANCE

For a fixed input an application is a dependence graph
of basic operations such as data accesses and computations.
The execution time of an application depends on the execution
times of its individual operations and how they are connected
by the dependence graph. The execution time of each operation
depends on the environment in which it executes, which
includes the properties of the hardware and runtime software
on which it runs and the behavior of any applications currently
utilizing shared resources. More formally, let Ops be the set of
all operations and Exe the set of all execution environments.
Let TOp(o, e) be the execution time of operation o ∈ Ops

in environment e ∈ Exe and let
−−−−→
TOp(e) be the vector of

the execution times of all operations in environment e. For
any application A let TApp(StructA,

−−−−→
TOp(e)) be the execution

time of A in environment e, which is a function of its structure
StructA (e.g. the dependence graph) and the mapping TOp of
operations to their execution times.

This very high-level formalization of application perfor-
mance can be instantiated in various ways to make a concrete
prediction of application performance. The most detailed in-
stantiation is real hardware, where set Exe corresponds to all
the electrical configuration of circuit wires and set Ops is the
set of transitions between wire configurations. This accounts
for all the electrical, power and performance phenomena of the
hardware and software at hand but is clearly not useful for pre-
diction. An approximation of this formalization may be a gate-
level simulation (e.g. VHDL), where the set Exegate of execu-
tion environments corresponds to all on/off configurations of
wires and set Opsgate contains the transitions between them.
Each element in Exegate and Opsgate is a set of elements of
sets Exe and Ops, respectively, grouping the many electrical
wire states and transitions that are logically equivalent into
a single set. While the gate-level model is predictive, its high
cost makes it impractical for routine use. A micro-architectural
model represents a somewhat coarser instantiation where each
execution environment in set Exemicro is a subset of Exegate
that denotes all the wire configurations that correspond to the
same micro-architectural state, and same for operations. This
model produces very accurate estimates of execution times
but is still very expensive. An architectural-level model where



execution environments are architectural states and operations
correspond to opcodes and high-level cache states, are a further
coarsening that gives up some predictive accuracy for a lower
prediction cost.

Each coarser-level model partitions the set of possible
execution environments and operations into a smaller number
of subsets to provide the appropriate balance of performance
and predictive accuracy. The above examples correspond to
simulation-based models that take as input an appropriately
detailed description of hardware and software and simulate
how the combined system may behave at the appropriate level
of granularity. KONGMING takes a inverse approach based on
empirical observation and statistical modeling. It defines an
approximation of Exe and Ops based on observed behaviors
of software on real systems and uses statistical modeling
to relate the properties execution environments specified at
this granularity to the execution times of applications of
interest. KONGMING’s high-level approximation of hardware
and software behavior provides a useful degree of predictive
accuracy, while being fast to compute and requiring no detailed
knowledge of (i) the structure of the hardware and software
on the machine on which a target application may run, or (ii)
the internal structure of the application itself.

III. METHODOLOGY

KONGMING groups the operations an application may
execute into equivalence classes and estimates how operations
within a given set behave in different execution environments
by actually executing them in such environments. Table I
lists the sets of operations OpsKONGMING that KONGMING
considers. Each operation set is instantiated as a micro-
benchmark that repeatedly executes a representative operation
from each set. These “measurement” benchmarks include (i)
memory accesses that use either random or strided access
patterns with blocks of size 1KB, 1MB and 1GB, (ii) arithmetic
operations on values steamed to/from memory, (iii) random
disk writes with blocks of size 4MB, 64MB and 1GB, and
(iv) file creation and deletion. The operator T KONGMING

Op (o, e)
is KONGMING’s estimate of the execution time of operation
o in execution environment e, which is computed by run-
ning the measurement benchmark associated with o in this
environment. Since KONGMING does not rely on knowledge
of the internal details of the system to which it is applied,
it partitions the set of execution environments based on the
execution times of the measurement benchmarks when run in
each environment. Thus, two execution environments e, e′ ∈
Exe are grouped into the same environment in ExeKONGMING

if ∀oKONGMING ∈ OpsKONGMING.T
KONGMING
Op (oKONGMING, e) =

T KONGMING
Op (oKONGMING, e

′).

The above formalization makes it possible to create a
model of application behavior that can predict (i) how long
an application will run when executed on a given system and
(ii) given some system how long two specific applications will
run when executed concurrently. These predictions are made
based on a set of experiments that is linear in the number of
applications for which predictions must be made and does not
depend on the number of permutations of systems and the ap-
plications that may run on them. The first step of our approach
is to compute the operator T KONGMING

App (StructA, T
KONGMING
Op )

for a given application A. Since KONGMING does not have

access to the application’s structure, this operator is computed
statistically, by executing both the application and our set
of measurement benchmarks in a wide range of execution
environments. Each experiment produces a different observa-
tion of how T KONGMING

Op relates to A’s execution time. These
are used to train a statistical regression model that takes
as input the vector of operation execution times in each
environment (T KONGMING

Op (o, e) for all e) and as output the
execution time of A in the same environment. The resulting
model T KONGMING

App (T KONGMING
Op ) approximates the relation TApp

without knowledge of StructA. In this study we considered
the models listed in Table II. The second step is to quantify the
effect that the execution of application A has on the execution
environment observed by other co-executing applications. This
is done by running the measurement benchmarks concurrently
with A to produce the vector To,eA of their observed execution
times (eA is the execution environment induced by A on a
given system).

Instead of waiting to find the a broad range of execution
environments on which to run its experiments KONGMING
creates them synthetically. This is done by running different
configurations of the measurement benchmarks on a given
machine to place various fixed amounts of load on different
system resources, while the target application and measure-
ment benchmarks execute on it. Note that although these load
inducers share source code with the measurement benchmarks
their purpose is generate a variety of execution environments
on which the main application and measurement benchmarks
run. The same effect could be achieved in other ways by
varying available power, adding or removing memory modules,
or executing some other suite of applications.

The model trained on the resulting space of execution
environments is used in two ways. First, consider a machine
that is made available for application A to run on. The effective
performance of the machine is unknown because both its
hardware details and the applications that may be running
on it are unknown. KONGMING predicts how long A will
execute on this machine (in its execution environment e) by
first executing the suite of measurement benchmarks on this
machine to produce their execution times T KONGMING

Op (o, e). It
then applying T KONGMING

App (T KONGMING
Op ) to produce A’s predicted

execution time on this machine. If there is a change in the
machine’s configuration (e.g. its frequency) or the set of ap-
plications that are running on it, the measurement benchmarks
will need to be re-executed to quantify the new execution
environment and adjust its predictions.

Second, consider two applications A and B. A scheduler
may wish to co-locate them on the same compute node within
a cluster but needs to know how long each will run when it is
sharing resources with the other. Since the execution of each
application creates the execution environment within which
the other runs KONGMING can use its models to answer this
question. The execution environment induced by A is eA and it
is characterized via vector To,eA , which includes the execution
times of all the measurement benchmarks when they were run
concurrently with A. T KONGMING

App (To,eA) is then KONGMING’s
prediction of the execution time of B when run concurrently
with A, and the reverse procedure is used to predict A’s
execution time. This analysis needs to be performed separately
for each type of co-location that is employed, since two



TABLE I: The List of Interference Surrogates of KONGMING.

Name Description Resource

memory.streaming.1K Streaming access a 1KB array Cache
memory.streaming.1M Streaming access a 1MB array Cache/Memory
memory.streaming.1G Streaming access a 1GB array Memory
memory.random.1K Random access a 1KB array Cache
memory.random.1M Random access a 1MB array Cache/Memory
memory.random.1G Random access a 1GB array Memory
stream.add Add two vectors Memory
stream.copy Copy from one vector to another Memory
stream.scale Multiply a vectors with a scalar Memory
stream.triad Combination of add and scale Memory
iobench.read.4M Read random 4MB blocks from a file IO
iobench.read.64M Read random 64MB blocks from a file IO
iobench.read.1G Read random 1GB blocks from a file IO
iobench.write.4M Write random 4MB blocks to a file IO
iobench.write.64M Write random 64MB blocks to a file IO
iobench.write.1G Write random 1GB blocks to a file IO
metadata.create Create a thousand files IO (metadata)
metadata.delete Delete a thousand files IO (metadata)

TABLE II: Performance Prediction Models.

Model Description

LINEAR Ordinary least square regression [4].
CART Classification and regression tree [12].
SVM Support vector regression machine [9].
GBM Gradient boosting machine [10].

applications executing on the same core is different from
different cores on a socket, different sockets on a motherboard,
etc. For each type of co-location we run the given application
and run the measurement benchmarks on the core(s) where we
expect the co-running application to execute. This quantifies
the execution environment that the given application induces
on another application that runs on those compute resources.

IV. EXPERIMENT

We evaluate the effectiveness of KONGMING for two
prediction scenarios:

a) Single-task prediction: : In the first scenario a user
submits a task to run on a cloud and the cloud scheduler
must map this task to some concrete system. Different systems
may be built using different hardware (e.g. cache size) , their
hardware and software may be configured differently (e.g.
power level or software cache size) and they may currently be
executing different sets of applications. To choose the system
to which this task should be mapped to achieve high efficiency
and satisfy quality of service constraints the scheduler must
predict how long it will run when executed on each of the
available systems.

b) Task-pair prediction: : In the second scenario the
scheduler is presented with a set of tasks that must be mapped
to the available systems. Since it is mapping multiple tasks to
the same system is very likely to improve overall efficiency
the scheduler needs to know the impact of co-scheduling two
tasks on the same system. The prediction task is thus, given
two applications to predict their execution time when executing
concurrently on the same system.

Our experiments focused on the following experimental
platforms. EC2 corresponds systems within the Amazon EC2
cloud, running code in m1.small virtual machine instances.

These instances provide the computing power of approximately
1 GHz 2007 Xeon processor, with 1.7GB RAM and 160GB
disk space. Cluster corresponds to systems in a dedicated
cluster Specs ???. The applications we used in our experiments
come from the SPEC2006 [5] and YCSB [7] benchmark
suites. Applications in SPEC2006 are designed to test CPU
performance and are primarily sensitive to contention for
cache and memory. We selected from the overall set of
SPEC2006 benchmarks a subset that includes both both batch
and latency-sensitive applications from YCSB provides a set
of workloads to evaluate major key-value store systems used
in the cloud, Cassandra, MongoDB and Voldemort. It are
sensitive to contention for I/O resources such as disks and
file systems. The complete set of benchmarks is detailed in
Table III. The SPEC2006 benchmarks were executed on their
test-class inputs and the YCSB benchmarks were run with
10,000 keys.

A. Single-task prediction

In this section, we evaluate the accuracy of our prediction
models for the case where we wish to predict the execution
time of a single task when it runs inside an EC2 instance
that shares physical resources with other instances running
on the same physical node. To collect data for training and
evaluation we repeatedly executed each target application and
all the measurement benchmarks (executed in sequence, not
concurrently) on 10 different small Amazon EC2 instances for
blocks of 24 hours, recording the execution times of each run
of the target application and measurement benchmarks. The
execution environment on EC2 varies naturally across differ-
ent systems (different configurations of hardware) and time
(different applications are co-located with our benchmark). As
such, these experiments do not use our interference threads to
create additional load.

Show some highlights of performance variability

We evaluate the accuracy of KONGMING’s predictions
using cross-validation [12], where a model is trained on each
application’s observations from 9 EC2 instances and used to
predict its execution times on the remaining instance. This pro-
cedure was repeated 10 times to predict application execution
times for each system and we report the average error of these
predictions. Cross-validation provides a reliable estimation of
model performance and can be used to prevent overfitting the
model to the given dataset. Each observation used for training
includes the execution times of the measurement benchmarks
executed immediately before an application run, as well as
the execution time of the application itself. Observations used
for prediction only contained the execution times of the mea-
surement benchmarks and the KONGMING model was used to
predict the corresponding application execution time.

The distribution of prediction accuracy is plotted for each
target application in Figure 1.

The large number of measurement benchmarks KONG-
MING uses enables it to account for the influence from many
different aspects of a system on an application’s performance.
However, since typical application’s performance is typically
bottlenecked by a few system resources, its execution time
will only be affected by the performance of and contention for
only these resources and unaffected by by the others. To better



Name Description

Cassandra [1] Apache Cassandra is an open source distributed database management system designed to handle
large amounts of data across many commodity servers, providing high availability with no single
point of failure.

MongoDB [3] MongoDB is a cross-platform document-oriented database system.
Voldemort [6] Voldemort is a distributed data store that is designed as a key-value store used by LinkedIn for

high-scalability storage.

TABLE III: Storage applications from the YCSB benchmark suite.

TABLE IV: Median and inter-quartile range of percentage error for single-task predictions on EC2.

MEAN LM LM.GA CART CART.GA SVM GBM

cassandra 67.3 / 5.2 14.5 / 16.4 72.4 / 131.7 9.1 / 14.6 7 / 3.8 24 / 32.3 34.8 / 36.8
mongodb 29.2 / 30.8 6.2 / 8.7 15.2 / 13.2 5.5 / 8.4 20.3 / 10.8 6.6 / 8.8 6.7 / 10.8
voldemort 6.9 / 6.7 5.2 / 8.7 14.8 / 14.9 6.1 / 9.6 3.8 / 5.7 5.8 / 8.3 5.5 / 8.7
spec.GemsFDTD 8.2 / 2.6 2.1 / 2.9 1.8 / 2 2 / 3.1 1.1 / 1.3 2.3 / 3.6 2 / 2.7
spec.astar 0.3 / 1.2 0.8 / 1.1 0.4 / 0.7 0.9 / 1.2 0.8 / 0.6 0.9 / 1.1 0.8 / 1
spec.bwaves 3.8 / 1 1.4 / 1.9 0.7 / 0.7 1.3 / 1.4 1 / 1 1.3 / 1.7 0.9 / 1.3
spec.bzip2 6.9 / 2.9 2.9 / 3.9 0.8 / 1 4.5 / 4.8 0.7 / 1 3.5 / 4.5 3.5 / 4.1
spec.cactusADM 4 / 4.9 2.5 / 3.2 1.1 / 1.4 3 / 4.6 2.2 / 2.5 2.4 / 3.6 3.5 / 3.8
spec.calculix 11.1 / 12 15.8 / 20.7 9.8 / 6.7 15.9 / 21.3 10.4 / 11.6 12.7 / 17.1 20 / 24.3
spec.dealII 0.3 / 0.5 0.5 / 0.7 0.3 / 0.3 0.7 / 0.8 0.4 / 0.3 0.5 / 0.7 0.6 / 0.8
spec.gamess 6 / 5 3.4 / 4 11.4 / 9.7 3.2 / 6.9 4.6 / 8.1 2.8 / 4 4.5 / 3.6
spec.gcc 1.8 / 1.6 1.6 / 2.1 0.8 / 1.3 1.8 / 2.5 1.2 / 1.8 1.7 / 1.9 1.7 / 2
spec.gobmk 0.5 / 1 0.9 / 1.3 0.5 / 0.4 1.3 / 1.2 0.9 / 0.9 1.1 / 1.5 1.1 / 1.2
spec.gromacs 3.1 / 2.5 1.4 / 1.7 1.1 / 1.1 1.5 / 1.8 1 / 0.7 1.6 / 1.7 1.4 / 1.8
spec.h264ref 0.4 / 0.6 0.9 / 1.3 0.5 / 0.3 0.9 / 1.3 0.5 / 0.5 0.8 / 1.2 0.8 / 1.1
spec.hmmer 0.6 / 0.7 0.6 / 0.9 0.3 / 0.4 0.8 / 1 0.5 / 0.4 0.7 / 0.8 0.7 / 0.7
spec.lbm 1.3 / 1 1 / 1.6 0.8 / 1.1 1.6 / 1.9 1.1 / 1 1 / 1.4 1.1 / 1.5
spec.leslie3d 0.8 / 0.6 0.8 / 1.2 0.7 / 0.6 1 / 1.3 0.7 / 1.9 0.8 / 1.2 0.9 / 1.1
spec.libquantum 1.8 / 4.4 2.7 / 3.7 1.7 / 4.3 3.2 / 4.1 2.5 / 2.3 2.8 / 3.5 2.3 / 3.7
spec.mcf 2.7 / 1.9 2.2 / 2.6 0.9 / 0.9 2.1 / 2.9 1.2 / 0.8 2.1 / 2.6 2.2 / 2.5
spec.milc 4.1 / 2.9 2 / 2.7 1.1 / 1.5 2.6 / 2.9 1.3 / 0.9 2 / 2.4 2 / 2.3
spec.namd 2.3 / 1.8 0.4 / 0.6 0.4 / 0.6 0.5 / 0.8 0.8 / 1 0.5 / 0.6 0.5 / 0.6
spec.omnetpp 1.6 / 1.5 1.9 / 2.6 1 / 1.3 1.8 / 2.6 1.2 / 0.9 1.5 / 1.9 1.7 / 2.3
spec.perlbench 0.9 / 1.2 1.1 / 1.7 0.5 / 0.8 1.5 / 2.9 0.8 / 0.6 1.2 / 1.4 1.4 / 2.6
spec.povray 1.4 / 1.4 1.4 / 2.1 0.9 / 1 1.5 / 2.1 1 / 1.2 1.4 / 2.1 1.4 / 1.9
spec.sjeng 8.5 / 0.7 1.3 / 1.8 0.6 / 1 1.4 / 2 4.1 / 0.8 1.6 / 1.8 1.2 / 1.7
spec.soplex 14.4 / 20 11.6 / 17.3 14.4 / 16.1 17.9 / 25.9 17.3 / 21.1 11.5 / 16.8 11.1 / 15.7
spec.sphinx3 3.9 / 4.4 3.1 / 3.5 2.6 / 2.9 3.6 / 4.9 2.1 / 2.5 2.9 / 3.2 3.4 / 3
spec.tonto 3.8 / 1.8 1.7 / 2.2 1.4 / 2.4 2.2 / 6.6 1 / 1.2 1.7 / 2.2 3.1 / 2.8
spec.wrf 2.2 / 1.1 0.8 / 1.1 0.3 / 0.3 0.9 / 1.3 0.3 / 0.7 0.9 / 2 0.8 / 1.1
spec.xalancbmk 1.1 / 2.9 1.8 / 2 1.5 / 1.4 1.6 / 2.3 1.3 / 2 1.7 / 1.7 2.2 / 2.4
spec.zeusmp 0.9 / 1.6 1 / 1.1 0.4 / 0.4 1.2 / 1.3 0.8 / 0.8 0.9 / 1.2 0.9 / 1.1
geo.mean 2.6 / 2.2 1.8 / 2.5 1.4 / 1.6 2.1 / 2.9 1.5 / 1.5 1.9 / 2.5 2.0 / 2.5

understand the factors that control the behavior of our target
applications we attempted to identify the measurement bench-
marks and interference threads that are most important for
accurately predicting each application’s execution time. The
choice of key benchmarks helps to highlight each application’s
bottleneck resources and operations and can help developers
improve application performance or help them identify the
types of systems (e.g. fast CPU vs large cache vs SSD storage)
that are most suited for their applications. This was done by
running a genetic algorithm [15] to identify the subset of
micro-benchmarks that should be used as measurement bench-
marks and interference threads to produce an accurate model

for each application. The state of the genetic algorithm was
set to be a bit vector with a single bit for each measurement
benchmark and interference thread. For a given bit vector
we trained the GLM and CART models on the selected set
of observations (choice of interference thread) and features
of these observations (choice of measurement benchmark).
We then used the resulting model to predict the execution
times of this application, as above. The genetic algorithm
implementation in the R genalg package was then used to
find the bit vector that produced high accuracy with these
models with a small number of terms, using vector crossover
and mutation operations.
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Fig. 1: CDF of prediction accuracy on EC2 estimated by 10-fold cross validation for YCSB applications.
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Fig. 2: Histograms of execution times of the I/O-intensive YCSB and measurement benchmarks on EC2. The title of each plot
displays the name and the ratio between the longest and the shortest execution times of each benchmark.

Figure 2 shows ....

B. Task-pair prediction

This section evaluates KONGMING’s accuracy for the use-
case where the execution time of two applications that are
co-located on the same system. Algorithm 1 shows how
the training data for KONGMING is collected. In the first
phase we repeatedly execute each application and the mea-
surement benchmarks on an otherwise unloaded system in
Cluster. During each iteration we execute in the background
one or more copies of a single interference benchmark to
induce a specific amount of load on both the application and
measurement benchmark, for a total of 10 observations for

each combination of application and interference thread. This
produces a heterogeneous set of execution environments that
enables KONGMING to train a robust model that accounts for
a wide range of application behaviors. In the second phase we
repeatedly run each application on one core while on another
core we execute and time each measurement benchmark. The
resulting execution times quantify the execution environment
induced by A on applications that concurrently execute on a
different core, sharing the disk and lower levels of the memory
hierarchy but not computational resources and L1 cache. We
focused on cross-core interference because prior work [? ] and
own experiments have demonstrated that cloud systems such
as EC2 are very effective at isolating performance interference
to computation but are less effective at isolating memory



TABLE V: Median and inter-quartile range of percentage error for task-pair predictions on the local cluster.

MEAN LM LM.GA CART CART.GA SVM GBM

cassandra 117.6 / 7.1 20.9 / 27.3 6.5 / 8.5 13.2 / 4.1 3.1 / 10.8 29.7 / 18.7 38.9 / 134.8
mongodb 6.6 / 6 2.4 / 2.8 2.4 / 2.3 2.1 / 2.1 2.1 / 1.9 2 / 2.3 2.2 / 2.2
voldemort 28.3 / 16.8 7.1 / 11.3 6.3 / 8.2 13.3 / 18.5 5.3 / 9.1 4.4 / 8 22 / 21.1
spec.GemsFDTD 56.9 / 9.3 7 / 8.4 1.7 / 2.3 17.2 / 5.3 1.6 / 2.4 40 / 22.1 5.1 / 9.5
spec.astar 10.4 / 1.2 0.4 / 0.6 0.4 / 0.6 0.4 / 0.6 0.3 / 0.5 0.6 / 0.6 0.5 / 0.6
spec.bwaves 11.1 / 1.8 0.8 / 1 0.8 / 1 0.7 / 0.8 0.7 / 0.9 0.7 / 0.8 0.6 / 0.6
spec.bzip2 11.4 / 40.9 0.9 / 1.1 0.9 / 1.1 1 / 1 0.9 / 1 1.6 / 2.1 1.2 / 1.2
spec.cactusADM 23.4 / 55.5 6.3 / 8 6.7 / 8 5.6 / 8.9 5.3 / 8.2 5.1 / 7.2 5.4 / 6.8
spec.calculix 13.5 / 40.7 9.9 / 14.2 10.2 / 11 9 / 13.7 9.3 / 12 10.3 / 12.1 10.2 / 14.5
spec.dealII 11.6 / 36.6 0.7 / 0.9 0.5 / 0.9 0.6 / 0.4 0.3 / 0.2 0.9 / 1.1 0.4 / 0.6
spec.gamess 7 / 4.5 2.7 / 2.9 1.8 / 2.2 2.3 / 2.3 1.9 / 2.1 2.2 / 2.3 2.2 / 2.6
spec.gcc 11 / 44.9 2.8 / 4.4 2.2 / 4 4.3 / 4.2 1.9 / 3.4 3.5 / 3.8 2.7 / 4
spec.gobmk 13.8 / 4 1.7 / 2.1 1.4 / 1.9 1.8 / 1.9 1.4 / 1.8 1.7 / 2.2 1.3 / 1.7
spec.gromacs 15.9 / 16.5 4.5 / 8.2 5.2 / 7.6 4.7 / 7.6 4.3 / 9 4 / 9 4.9 / 8.7
spec.h264ref 22.5 / 4.4 2.7 / 3.2 2.2 / 2.6 3.2 / 3.2 1.4 / 1.7 3.4 / 3.8 1.5 / 2.4
spec.hmmer 5 / 1 0.6 / 0.7 0.4 / 0.6 0.7 / 0.5 0.5 / 0.5 0.8 / 0.7 0.5 / 0.6
spec.lbm 13.1 / 6.3 2.2 / 2.9 1.9 / 2.1 1.5 / 2.6 1.7 / 2.2 2.2 / 2.9 1.9 / 2.5
spec.leslie3d 16.9 / 2.5 1.1 / 1.3 1 / 1.3 0.9 / 1.3 0.8 / 1.4 1.2 / 1.3 1 / 1.4
spec.libquantum 9.1 / 32.7 4.4 / 4.7 3.7 / 3.9 3.9 / 3.1 3.9 / 3.9 4 / 4 4.1 / 7.2
spec.mcf 13 / 12.3 3.6 / 4.8 3.9 / 4.8 4.1 / 4.5 3.4 / 4.4 4.5 / 5.5 3.7 / 5.5
spec.milc 14.3 / 79.4 2.1 / 2 2.2 / 2.8 2.3 / 2.9 1.6 / 2.9 2.6 / 3.3 1.4 / 3.1
spec.namd 17.4 / 1.7 0.7 / 1.1 0.7 / 0.9 0.9 / 0.8 0.9 / 1 1.2 / 1.3 0.6 / 1
spec.omnetpp 1.8 / 5.5 2.6 / 3 1.6 / 1.6 1.4 / 2.3 1.4 / 1.7 2.1 / 2.6 3.1 / 3.7
spec.perlbench 5 / 14.5 1.6 / 2.9 1.9 / 2.4 1.2 / 2.5 1.7 / 2.5 1.2 / 2.8 2 / 2.5
spec.povray 6.5 / 28.8 1.2 / 1.8 1 / 1.1 1 / 1.3 0.9 / 1.3 1.1 / 1.6 1.5 / 1.9
spec.sjeng 17.5 / 52.5 4 / 5.1 3.8 / 5.2 3.7 / 6 3.2 / 4.6 3.4 / 5 3.6 / 3.5
spec.soplex 30.3 / 33.7 15.5 / 19.2 14.3 / 15.8 13.8 / 14.2 14.6 / 16 14.7 / 16.4 13 / 14.9
spec.sphinx3 17.1 / 35.9 1.9 / 2.3 2 / 2.3 2.6 / 2.6 2.2 / 2.1 2.5 / 2.3 2.3 / 2.5
spec.tonto 3.2 / 30.1 4.9 / 5.7 2.2 / 2.7 2.3 / 3.6 1.9 / 2.6 2.5 / 3.9 3 / 4.4
spec.wrf 11 / 42.6 0.6 / 0.8 0.5 / 0.7 0.7 / 1.1 0.5 / 0.4 0.8 / 1 0.6 / 0.7
spec.xalancbmk 14.7 / 59.6 5.3 / 6.4 4.6 / 5.9 4.1 / 6.1 3.9 / 4.3 4.9 / 5.9 4.7 / 5.7
spec.zeusmp 13.8 / 7.1 2 / 3.1 1.9 / 2.5 1.9 / 2.1 1.8 / 2.3 2.2 / 2.7 1.5 / 2.2
geo.mean 12.8 / 12.7 2.5 / 3.2 2.0 / 2.6 2.4 / 2.7 1.8 / 2.3 2.7 / 3.2 2.3 / 3.2

hierarchies, storage and networks.

We evaluate KONGMING’s predictions by executing every
pair of applications on a single Cluster system. Given two
applications A and B, KONGMING uses the execution times
of the measurement benchmarks when executed concurrently
with A to predict the execution time of B while being co-
executed with A, and vice versa to predict A’s execution time.

The average prediction accuracy is shown in Figure 3.

C. Efficacy Analysis of Interference Injector with Genetic
Algorithm

To accuracy of KONGMING’s predictions depends on
choosing a set of micro-benchmarks, both for measurement
and interference, that are representative of application and
system behaviors. A given benchmark can be instrumental for
KONGMING’s ability to accurately predict a given applica-
tion’s execution time in two ways. First, if a measurement
benchmark’s execution is helps to predict the application’s
execution time, this means that the operations executed by the
benchmark utilize the same hardware and software resources

Algorithm 1 Collecting Training Data

1: M ← {measurement benchmarks}
2: I ← {interference threads}
3: A← target application
4: while True do
5: for i in I do
6: run i in the background
7: for m in M do
8: run m and record its running time
9: end for

10: run A and record its running time
11: stop current execution of i
12: end for
13: end while
14: while True do
15: run A on one core
16: for m in M do
17: run m on another core and record its running time
18: end for
19: stop current execution of A
20: end while
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Fig. 3: CDF of prediction accuracy on the local cluster for YCSB applications.

as a major component of the application itself. Similarly,
if the inclusion of experimental runs that use a given a
benchmark for interference helps to improve KONGMING’s
accuracy, this serves as an independent indication that the
benchmark uses the same resources as the application. This
section analyzes the performance properties of our target
applications by considering the benchmarks that were most
instrumental in producing accurate KONGMING models when
used either as a measurement benchmark or as an interference
thread.

To evaluate this question we used a generic algorithm
described in Section IV-A to identify the sets of benchmarks
that the LM and CART models should use for measurement
and interference within their training on the task-pair predic-
tion problem on Cluster. The results are shown in Figure 5,
with Figure 5(a) focusing on LM with interference threads,
Figure 5(b) focusing on LM with measurement benchmarks
and Figures 5(c) and 5(d) focusing on CART with interference
and measurement, respectively.

V. RELATED WORK

Cuanta [11] employs a canonical set of synthetic cache
loaders (scl), which exhibit distinct access patterns with re-
spect to the sets and ways of last level cache on a given
platform, to emulate the effect of interference caused by actual
applications. The performance degradation imposed by one scl
on another co-running scl is measured and recorded in the
interference profile of the former. In a similar manner, the
interference profile of an application is obtained and then used
to identify its cache clone, the scl that most closely matches its
interference profile. This way, Cuanta reduces the prediction
of performance degradation caused by potentially unbounded
number of applications to a finite set of scls. To predict the
performance degradation of an application co-located with N
other applications, Cuanta needs to collect the performance
degradation table for the application where the slowdown ratio
of the application is recorded when running with every possible
combination of N scls, and then looks up the degradation table
by the cache clones of these co-located applications to find
out the actual performance degradation in the application. A
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(a) Measurement benchmarks
selected by LM.GA.
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(b) Measurement benchmarks
selected by CART.GA.

Fig. 4: Measurement benchmarks selected by GA for the
single-application experiments on EC2. Each column corre-
sponds to a measurement benchmark. Each row corresponds
to an application. Each cell indicates whether or not the
corresponding measurement benchmark is selected for the
corresponding application by GA.

key limitation of Cuanta is that it ties its features to hardware
parameters, which makes it non-transferrable across platforms.
Further, since it only considers memory behaviors, it ignores
interactions between contention for different resource types.
In contrast KONGMING considers all the major resources of
individual systems and because it measures each system’s
effective performance is portable across architectures.

Bubble-Up [14] is a profiling-based static approach to
predicting the performance degradation of a latency sensitive
application caused by interference imposed by a batch appli-
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(a) Sources of interference selected
by LM.GA.
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(b) Measurement benchmarks se-
lected by LM.GA.
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(c) Sources of interference selected
by CART.GA.
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(d) Measurement benchmarks se-
lected by CART.GA.

Fig. 5: Sources of interference and measurement benchmarks selected by GA for the colocation experiments on Cluster. Each
column corresponds to a source of interference or a measurement benchmark. Each row corresponds to an application. For
source of interference, each cell depicts the number of training runs selected by GA for the particular source of interference.
For measurement benchmark, each cell indicates whether or not the corresponding measurement benchmark is selected for the
corresponding application by GA.

cation when co-located. Bubble-Up consists of three primary
steps. In the first step, the QoS sensitivity of the latency
sensitive application is profiled by the bubble, a memory
subsystem microbenchmark, designed to generate interference
in last-level cache and memory bandwidth. The bubble is
configured to apply a series of different levels of interference
in the memory subsystem and the performance degradation
of the latency sensitive application is recorded along with the
interference level to form a QoS sensitivity curve. In the second
step, the batch application is profiled by a reporter, whose
QoS sensitivity curve is profiled in advance, and the level of
interference introduced by the batch application is obtained
by looking up on the reporter’s QoS sensitivity curve by its
performance degradation. Finally, the level of interference of
the batch application is checked against the QoS sensitiv-
ity curve of the latency sensitive application to predict the
performance degradation of the latency sensitive application
when running concurrently with the batch application. In a
follow-up work, Bubble-Flux [17], Bubble-Up is augmented
with dynamic bubble and continuous online QoS management
to handle load fluctuation of latency sensitive applications.
Like Cuanta, Bubble-Up focuses only on memory utilization,
ignoring the possibility that applications may interfere with or
be bottlenecked on multiple resources at the same time.

Paragon [8] formulates the task of performance degradation
prediction of applications running on datacenter platforms as a
collaborative filtering problem where the scores of sensitivity
and tolerance for interference are learned for every pair of
application and source of interference and recorded in two
utility matrices. The utility matrices are bootstrapped in an

offline step where a few tens of applications are profiled by
running concurrently with all microbenchmarks representing
sources of interference. In its online mode, a new application
is profiled against two randomly selected microbenchmarks
and the scores for the remaining sources of interference are
estimated using a regularized SVD method [2, 16] invented
by Simon Funk for the Netflix Prize. To make predictions
Paragon must run microbenchmarks on the systems for which
prediction must be made. In contrast, KONGMING must only
be trained on a representative set of execution environments,
which may be emulated on a single architecture or even a
single system.

Zhao et al [18] predict the performance degradation caused
by cross-core interference from aggregated L2 cache misses
and memory throughput using a piecewise regression model.
They notice that the performance of applications co-located
on a multicore processor is significantly dependent on the
aggregated pressure on the dominant contention factor, i.e.,
the shared resource that largely determines the severity of
performance degradation. On a system of multiple different
types of resources, the dominant contention factor for an
application varies in response to the composition of co-
located application, hence the piecewise model to improve
the accuracy of prediction over the full range of different
contention factors. They expect users to specify a set of
domain partitioning candidates for model training, conduct
model selection to choose the best domain partitioning using
a set of randomly selected applications for each platform,
then estimate the coefficients of the best model for each
application. In contrast, KONGMING automatically employs



a fixed set of representative microbenchmarks to measure
arbitrary systems and applications and induce a broad set of
execution environments.

VI. CONCLUSION

This paper presents KONGMING, an approach for modeling
the behavior of applications on complex architectures that is
able to predict the execution times of applications in a variety
of system contexts. KONGMING is sensitive to properties
of the hardware and software on which an application may
execute, as well as contention for a wide range of resources
from other applications, including computation, the memory
hierarchy, disk as well as file system metadata access. We
have demonstrated in this paper that KONGMING can predict
how long an application may run on a given system without
a priori knowledge of the system’s hardware configuration
or the applications currently executing on it. Further, for a
given system KONGMING can predict how long a pair of
applications will run when executed concurrently, accounting
for any contention they may have for shared resources.

We have demonstrated the effectiveness of KONGMING
on both EC2 virtual instances as well as real systems on a
dedicated cluster, showing that KONGMING makes predicts
application execution time consistently accurately. Further, we
have shown how the accuracy KONGMING relates to the
choice of measurement benchmarks and interference threads
used in its training, illustrating the fact that a given appli-
cation’s behavior depends on many different resources, which
must be considered to make accurate predictions. In our future
work we plan to employ KONGMING’s predictions as part of a
general purpose workload scheduler that can efficiently share
resources among complex heterogeneous workloads on various
hardware platforms.
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[13] L. Kalé and S. Krishnan. CHARM++: A Portable
Concurrent Object Oriented System Based on C++. In
A. Paepcke, editor, Proceedings of OOPSLA’93, pages
91–108. ACM Press, September 1993.

[14] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: increasing utilization in modern warehouse
scale computers via sensible co-locations. In MICRO-44,
2011.

[15] L. M. Schmitt. Theory of genetic algorithms. Theoretical
Computer Science, 259(1 - 2):1 – 61, 2001.
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